Clustering and Relational Ambiguity: from Text Data to Natural Data
نویسندگان
چکیده
منابع مشابه
Clustering and Relational Ambiguity: from Text Data to Natural Data
Text data is often seen as “take-away” materials with little noise and easy to process information. Main questions are how to get data and transform them into a good document format. But data can be sensitive to noise often called ambiguities. Ambiguities are aware from a long time, mainly because polysemy is obvious in language and context is required to remove uncertainty. One claim in this p...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملClustering in Relational Biological Data
The scientific endeavor of biology is becoming increasingly reliant on data in electronic form, and it is therefore necessary for biologists to manage and understand large quantities of data. Publicly available data including biological sequences, biological structures, and literature in the life sciences have grown to such an extent that computing is essential simply to store and access it. He...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Data Mining & Digital Humanities
سال: 2014
ISSN: 2416-5999
DOI: 10.46298/jdmdh.4